CHAPTER |
THE NUMERICAL RANGES

- 1.1 INTRODUCTION

This first chapter is largely expository.
In it we develop the basic theory of numerical ranges Many
of the results are now well known, however, because of their import-
ance and the frequent use we make of them, they are treated in some

detail.

In section 2 we give F.F. Bonsall's definition of the numer-
ical range of an element of a normed algebra, and, in the case of the
algebra consisting of all the operators on some normed linear space,
we see that two other numerical ranges can be defined, one is due to
F.L. Bauer, the other to G. Lumer. We investigate the relationship
between these numerical ranges and determine some of their properties.
B. Bollobds [1] uses an extension of a result of Bishop and Phelps [1]
to relate the numerical range of an operator, on a Banach spadé, to
that of the closely comnnected conjugate operator. We show that when
the space has a smooth dualbthe result follows quickly from the Bishop

and Phelps' result.

The third section examines bounds on the numerical ranges.
These bounds were first determined by Lumer. We use them to

more closely relate the three numerical ranges defined in section 2.



From this we see that the numerical radius is the same for any of
these three types of numerical range. We then use an argument of
Bohnenblust and Karlin [1] to show the numerical radius is an equiv-

alent linear norm for the algebra.

Bauer studied numerical ranges as a way of approximating the
spectrum. We discuss the relationship between the numerical ranges
and the spectrum in section 4, showing that the spectrum is contained
in the closure of the numerical range. To approximate the spectrum
more closely, we consider not just the numerical range defined in the
algebra with the original norm, but numerical ranges defined relative
to the algebra under equivalent norms. We show that the convex
hull of the spectrum is the intersection of all such numerical ranges.
This result was suggested by work of J.P., Williams [2] for operators
on a Hilbert space, and a formula for the spectral radius given by
Bonsall [2] (and in the case of a commutative algebra, by Bohnenblust
and Karlin [1]). The result has also appeared in Bonsall and Duncan
[11. In the case when the algebra is the set of operators over a
Hilbert space we sharpen the result to cbtain an alternative proof of

William's result.

In section 5 we restrict our attention to those elements
with real numerical ranges, We give two characterizations of such

elements, originally given by Lumer [2], and prove the fundamental



result of I. Vidav [1] that for such elements the spectral and num-
erical radii are the same. We use this to obtain another character-
ization of elements with real numerical range, which will later form

the basis of our theory in Chapter 2.

In the last section we use the set of elements with real
numerical range to define several classes of elements of a normed
algebra. Some properties of these various types of elements are

then established, paving the way for our characterization of B%-

algebras in Chapfer 2.



1.2 NUMERICAL RANGES

F.L. Bauer [1] in 1962 defined the numerical range of an op-
erator over a finite dimensional normed linear space. His definit-
ion readily extends to any normed linear space E and may be approached
as follows:

Forvany x g E let

D(x) = {f ¢ E' : £(x) = 1if12 = yxu?}
where E' denotes the dual space of E. The Hahn-Banach theorem
ensures that D(x) # ¢. For any operator T € B(E) and x € E denote
by Wk(T) the convex subset of the complex plane defined by

W (T) = {£(Tx) : £ e D(x)}.
Then W(T) = I}{W%(T) : x € E, Ixll =1} is Bauer's numerical range.
We will call it the spatial numerical range of T, which may also be
defined as follows.
2.1, DEFINITION. For a normed linear space E and T € B(E) the
spatial numerical range of T is

W(T) = {f(Tx) : x € E, x| = 1, and £ ¢ D(x)}.

This definition was extended, from operators over a normed
linear space, to arbitrary elements of a normed algebra A by F.F,
Bonsall [1] who defined the numerical range of a € A as
V(a) = w(T.)
where a‘»Ta is the left regular reﬁresentation of A in B(A), that

is Ta(b) = ab for all b € A. We will call V(a) the algebra



numerical range of a. A clearer definition of V(a) is the following.
.2.2. DEFINITION., For a normed algebra A and a € A, the algebra
numerical range of a is

V(a) = {f(ab) : b e A, 'ibll = 1 and £ € D(b)}.
If E is anormed linear space, we may take A = B(E) and define V(T)
for any T ¢ A,
+2.3. PROPOSITION., For a normed linear space E and T ¢ B(E)
we have W(T) L. V(T).
Proof. If X e W(T) then X = £(Tx) for some x € E, #xy = 1, and
f e D(x)., LetU(y) = f(y)x for all y ¢ E then U € B(E), and denote
by g the evaluation functional defined by g(S) = f(Sx) for all

S € B(E), then g € D(U) and

A = g(TU) e V(T). //

Given a normed linear space E, for each x ¢ E select an
element fx € D(x), and define mapping ¢ : x ™ fx : E~>E'. We call
¢ a support mapping of E into E'. We will say E is smooth if there
is only one possible support mapping, that is if D(x) is singleton
for every x € E, and rotund if every possible support mapping is one
to one, or D(x)() D(y) = ¢ whenever x # y. (This is equivalent to
the more usual definition of rotundity, viz. x # y and fixil , |yl € 1

implies fx + yy < 2 [Giles, 11).
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A different, but related, definition of numerical range
for an operator, over a normed linear space, was given by G. Lumer
[1] in 1961 as follows.

.2.4, DEFINITION. For a normed linear space E, support mapping

¢ : xo f of E into E' and T e B(E) define H¢(I) by

W¢(T) = {fX(Tx) t x e E, xi} = 1}.

Clearly. for any support mapping ¢ of E into E', W¢(T) C W(T), in

!

fact W(T) ={$/ W¢(T).' If E is a smooth space, then W

where ¢ is the unique support mapping of E into E'.

¢(T) = W(T)

We also see that if the space is a Hilbert space then
W(T) = W¢(T) is the traditiénal numerical range, first defined by
Toeplitz in 1918 for an operator T over a finite dimensional inner-
product space. Thus if H is a Hilbert space and T € B(H) then

WT) = {(Tx,x) : x € H, lixy)} = 1} veeea (1)

that is, W(T) is the image of the unit sphere of H under the quadratic
form associated with T. In this setting W(T) is sometimes referred

to as the "Toeplitz field of values" of T.

We say that a normed algebra A has a one e € A, if
ea = ae = a for all a € A, further if lleij = 1 we say A is a unital

Bonach Algebra with unit, e.

It is well known [Halmos,l] that the numerical range of an
operator over a Hilbert space, as defined by (1), is convex. In

general, this is not true for either W,(T) or W(T) when T is an

¢
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operator over an arbitrary normed linear space, see [Lumer, 1] and
[Bonsall and Duncan, 1, 11.11. However as the following well known
result [Bonsall, 1] will show, V(a) is convex if A is a unital normed
algebra. In fact, if the algebra has a unit, a much richer theory
of numerical range can be developed. It is for this reason that we
will largely restrict our attention to unital algebras.
2.5, LEMMA, For a unital normed algebra A and a € A

Wa) = {£f(a) : £ € D(e)}
Proof. Clearly {f(a) : f € D(e)} C V(a).
Conversely if A € V(a) then A = f(ab) for some b ¢ A, ibll = 1, and
f e D(b). Now w € A' defined by mb(u) = f(ub), for all u e A, is
an element of D(e) and X = wb(a) so A g {f(a) : £ e D(e)}. //
.2.5.1. COROLLARY. For a unital normed Algebra A and a € A, V(a)
18 a closed convex subset of C.
Proof. If Ay, Xy € V(a) then Ai = fi(a) for fi e D(e), i = 1,2, so
for 0 € a € 1, ady + (1-0)Xy = (af; + (1-a)fy)(a) but
af; + (1-a)f; € D(e) and therefore V(a) is convex.
V(a) is the image of the weak®*-compact subset D(e) of A' under the
weak*-continuous map £~ f(a) : A' > C, and so is compact, and there-

fore closed. //
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.2.5.2. COROLLARY. If B <s a subalgebra of a unital normed algebra
A, and if the unit e ¢ B, then for any a e B, VB(a) = VA(a) where the
subseript denotes the algebra relative to which the algebra numerical
range has been defined. |

Proof. 1If f ¢ DA(e) then f!B € DB(e) s0 VA(a) - VB(a). Conversely
if £ ¢ DB(e) then, by the Hahn-Banach theorem, f can be extended té

an element of DA(e). Therefore VB(a) - VA(a) and so they are equal.//

The last corollary shows that if a is an element of a unital
normed algebra then V(a) depends only on the subalgebra generated by
a and e, It also shows that if A is not complete then V(a) is
unaltered by passing to the completion of A. Thus in most cases we

may, without loss of generality, assume A to be a Banach algebra.

From their definitions it is easily seen that the numerical
ranges have the subadditive properties
W(AT) = AW(T) for all A ¢ C
and J W(T+V) € W(T) + W(V) for any T, V ¢ B(E),
and similarly for W¢(T) and V(T), where AW(T) and W(T) + W(V) have
the obvious meanings
AW(T) = {AE : & € W(T)}

and | W(T) + W(V) = {A+E :x € W(T) and £ e W(V)}.
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Bishop and Phelps [1] have proved that for a Banach space
X, 1;kD(x) : x ¢ X} is dense in X', the property is called sub-
reflexivity,
Bollobds [1] has shown that the proof of subreflexivity, given by
Bishop and Phelps, in fact, leads to an extension of their result.

Using his extended form of their result Bollobas proves that for

any T € B(X) W(T) = W(T'), where T' denotes the conjugate operator
of T defined by T'f(x) = £(Tx) for all x € X and f ¢ X',

We proe that if X is assumed to have a smooth dual the connection
between W(T) and W(T') follows readily from the subreflexivity of X.
.2.6. LEMMA. For a Banach Space X with a smooth dual, and for any

T & B(X) we have

W(T") = W(T)
Proof. If XA € W(T) then A = f(Tx) for some x ¢ X, lixif = 1, and
f € D(x). Therefore
A= THE(x)

A(T'f) € W(T")

so W(T) Z W(T'). It is thus sufficient to show W(T') & W(T).

Now for A € W(T') there exists f ¢ X', iff =1, and F ¢ D(f) such
that A = F(T'f). By the subreflexivity of X there exists a sequence
fn in X' and X in X, Hxnﬂ = 1 for all n, such that an - f > 0

and £ € D(xn). But the sequence 2n has an X'-yeak convergent sub-

sequence, ﬁm, that is ﬁm(g) > G(g) for all g ¢ X' and some
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G e X", Ugll ¢ 1.
However [ (f) - 1] g lxm(f) - xm(fm)|+|xm(fm) - 1| so 2 (£) > 1
and G ¢ D(f), but X' is smooth and so G = F.
Now
' - ' 1 - [ t - t
[ & (T'f ) - F(T'E)] < lxm('r £2) - R (T'E)[+[R _(T'F) - F(T'f)]
and so & (T'f ) » F(T'F)
m m

or fm(Txm) + X and so A e W(T). //

In this section we have defined the numerical range of an
element of a normed algebra and proved some of its properties, part-
icularly for unital algebras. When the algebra is the set of oper-
ators over a normed linear space we have seen how three different types
of numerical range can be defined for any operator. Much of our
later theory will be developed in terms of the algebra numerical
range, the spatial numerical range only being considered when the
results are explicitly relevant to it, while W¢(T) will not be consid-
ered after the next section. The reason for this will become appar-

ent after the relationship between w&(T), W(T) and V(T) is further

clarified in the next section.
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1.3 BOUNDS ON THE NUMERICAL RANGES,

We now obtain several bounds on the numerical ranges as

subsets of the complex plane.

We begin with a lemma first proved by Lumer [1, Lemma 12].
It provides the starting point for much of our later theory as well as
establishing the relationship between W¢(T), W(T) and V(T). The
proof we give is an adaption of that given by Bonsall and Duncan
[1, 2.5] for the corresponding result on V(a).
.3.1. LEMMA. For a normed linear space E, support mapping ¢ of E
into E', and T ¢ B(E) we have that

(T) = Lim «a "l{ I + oTi - 1}, the upper Gateaux

sup Rew¢
>0+
differential of the norm at I in the dirvection T.
Proof. For any x € E let x = x/Iixi] , then for 0 < a < 0TI L ana

f = ¢(x) we have
N[I-aTJxij 2 |£([I-0TIx)| since UFH =1
%2 Re £([I-aT]x)
= 1 -a Re f(Tx) since o ¢ R and f ¢ D(x)

> 0 since o < ilTU -1

Therefore | L1-aTIx > 1
1-a Re £(Tx)
and so
[ I-=TIxi) > Uz for any x ¢ E.
l-a Re f(Ti)
Now choose x = [I + aTly where v € E, ilyl] = 1 and we obtain
!\y-azT{yH - 1+ 0((!2) 5 ”[I + ch]yﬂ.

1-oaRe £f(Tx) ~ 1 -aRe £(Tx) ~
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aRe £(Tx) + 0(o®).
1 - a Re £(Tx)

Therefore > U[I + oTlyil -1

and since o > O

Re f(T&) + 0(a) > a—l {1 + aT]yH - 11,
1 - a Re £(Tx)

Since the limit as o tends to 0 from above is easily seen to
exist, we have

Re £(Tx) 2 Lim ot { H[T + oTlyt - 1}, where

a>0+
Yy e E, iyt =1 and x = [I + oTly
but Re £(Tx) € Re W¢(T) so

Sup Re W,(T) > Lim ot {M[I + aTlyti - 1} for eall
¢ o0+

v e E, iyli = 1, and since y may be chosen so thatli[I + aT]yll
is arbitrarily close to ‘I + oTl we have that

Sup Re (T) > Lim a'l{ HI + oTH - 1}.
¢ o0+

Conversely for any x ¢ E, ilxil=1, £ = ¢(x) we have
1 + aRe £(Tx) = Re £([1 + aT]x) ¢ UI + aTll for all a > O.
Therefore
Re £(Tx) ¢ o™ "{ T + oT!l - 1} for all a > O
and so

Sup Re W¢(T) € a-l { NI + oT! = 1} for all o > 0O

in particular

-1 )
i ¢ It -
Sup Re W¢(T) < L18 o { I + Tl - 1},

proving the result. ‘ //



.3.1.1. COROLLARY. Sup Re W(T) = Lim o % { IT + oTd - 1}
a0+

Proof. Sup Re W(T) = Sup Sup Re W¢(T) = Lim ot { 0T + oTh =~ 1}.
¢ a0+

-3.1.2. COROLLARY. For a unital Banach Algebra A and a & A

Sup Re V(a) = Lim o % { lle + aall - 1}.
a>0+

Proof. Let a » T, be the left regular representation of A in B(A).
Then V(a) = W(Ta) and so from Lemma .3.1.

Sup Re (V(a) = Lim ot {uI + aTaH -1}

o0+
= Lim o * { le + oall - 1}, since A is a
o0+
unital algebra and so a Ta is isometric. //

»3.1.3. COROLLARY. For a normed linear space E,suppert mapping ¢
of E into E', and T € B(E) we have V(T) = coW(T) = EEW$T), where
co denotes closed convex hull. |
Proof. By Corollary .2.5.1. E:‘c?wd)(T)g coW(T) < V(T) since
W¢(T)gw(T)(; V(T), so it is enough to prove V(T)gEJW¢(T).
Now since ESW&(T) is the intersection of all the closed half-planes
containing W¢(T) and since W¢(aT + BI) = aW¢(T) + 8 and
V(aT + BI) =.aV(T) + 8 for all a, B € C, it is sufficient to prove
that if W¢(T) is contained in the left-half plane then so is V(T).
That is sup Re V(T) < O whenever Sup Re w¢(T) <€ 0, but this follows
from Lemma .3.1. and Corollary .3.1.2. //

The next lemma, first proved by Bohnenblust and Karlin [1]

enables us to equivalently reformulate Lemma .3.1. in an important

way. For an element of a unital Banach algebra we define exp(a) by

® n . . .
exp(a) = ¢ + I8 /n! [Rickart, 1]. This map of A into A has

17.

//

many of the properties of the real function with the same coefficients

in its Taylor expansion; for example, if a, b € A commute then
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exp(a + b) = exp(a) exp(n).

3.2, LEWA. For q wnital Banach Algebra 4 and & ¢ A

we have Lim ot { lle + cayl - 1} = Lin a'llog exp(aa)tl
o0+ o0+

Proof. Since Sup Re V(a) < llall ve see by Leuma .3.1. that
{ lle + aall - 1} = 0(a) for small o > O,

Also exp(aa) = e + aa + R, where

1
. ® n . - 2
By = L, (ea)/nl and IR0 = 0(a®).
Therefore tle + aafl - HBlﬂ‘s lexp(aa)ll g lle + aap + ”Rl“
for small a. |

Now log(t) is a monotonically increasing function of t > 0 therefore
log( He + qall -UR 1) < log flexp(aa)ll log( lle + aall + R, ).
Further log t = (t = 1) - (t ~ 1)2/2 + .... for t > 0 so
log ( e + qall - HRlU ) =le + qay] - 1 - ﬂRlH * R, where
R, = §=2 (“)n+l( e + qall -~ 1 - HRIU Y /n = O(az) similarly
log ( Hle + aalt + HRl” ) =.He + cail=1 + anﬂ + R3 where
R3 = 0(&2). Combining these inequalities we get

lle + call -~ 1 + O(ae) $ log Hexp(aa)il slle + aall - 1 + 0(a2)
multiplying throughout by aal and teking the limit as o spproaches

0 from above,gives the result. . /1

«3.2.1. COROLLARY. Lim a_l{ e + aall - 1} = sup a_llog lexp(aa)ll
a0+ a>0

Proof. Clearly Lim a“llog Dexp(aa) il ¢ sup a_lloguexp(aa)ﬂ
o0+ a>0
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Conversely for any a>0

(20)—llog llexp(20a) ti= (2a)—llog il Cexp (aa )21y

A\

(Qa)-llog llexp(aa)ll 2, since log monotonically
increasing, therefore .
'(2a)"1log lexp(2aa)t = | d'llog fiexp (aa )l .
Hence, since ot log llexp(aa)il is a continuous function of o it
is a monotbnically decreasing function of o and so the reverse
inequality is true. That is

Lim o tiog lexp(aa)ll = sup o Tlog flexp(aa)il .

a0+ >0
The result now follows from Lemma .3.2. //

Lim anllog flexp (0a )il
o0+

.3.2.2. COROLLARY. Sup Re V(a)

sup a-llog Hexp(aaly .
0>Q )
Proof. This follows directly from the above corollary and Corollary

.3.1.2. together with Lemma .3.2. //

.3.3. DEFINITION., For a Banach Algebra A the mmerical radius of
aelis
v(a) = sup {|A|: A € V(a)}.
Clearly v(a) < flali .
If A is an operator algebra, A = B(E) for some normed linear

space E, then by Corollary .3.1.3. it is clear that

v(a) = sup{|A] : A e W(a)}
=sup{|A] :Ac¢ W¢(a)}, for any

support mapping ¢ of E into E'.



20.

Since V(ha) = AV(a) for any A ¢ C it is clear that
v(a) = sup sup Re V()a).
IA]=1
Hence the previous two lemmas give several expressions for v(a).

For easy reference we collect these together in the following

theorem.

3.4, THEOREM. For a unital Banach Algebra A and a € A the
following are equal to v(a):

i) sup 1lim a'l{ﬂe+akan - 1}
‘A1=1 o*0+

ii) sup lim o T log llexp(ara)ll
|A|=1 a0+

iii) sup IAI-l log liexp(ra)ll
0#reC

Proof. By the remark preceding the theorem, i) follows from
Corollary 3.172, ii) from Corollary 3.2.2 and, noting that
su sup ot log lexp(ara)ll = sup lkl_l log lexp(Aa)ll ,
[A]=1 a>0 0#AeC
iii) follows from Corollary 3.3.2, | //
For a Banach Algebra A, X ¢ C and a,b € A we have already
seen that V(Xa) = AV(a) and V(a+tb)C v(a) + V(b). It is clear
from these and the definition of v(a) that
v(a) = |A] v(a)
and v(atb) 5 v(a) + v(b).
Thus v(*) is a linear pseudonorm on A. The next Theorem, due

essentially to Bohnenblust and Karlin [1] shows that ¥(°) is a

norm on A, regarded as a linear space, equivalent to y.oi,



Hence in particular v(a) = 0 implies a = 0.

3.5. THEORE!; If A 48 a unital Banach Algebra, then for

ace f, % ai s v(a).

21,

Proof. Since v(a) = sup ]A|-l log llexp(ra)tl , by Theorem 3.4 iii),

O#AeC

A v (a) > llexp(Aa)!l for all 0 # X ¢ C.

1 exp(Aa)
.. 3 |
Therefore Had oy ]AI:R —5§§—»-dxu » R

= *l%lJQH-Szfilél-dellwhere py Rele
0

an

0
-1 eRv(a)

we have e

v
o

A
Pl B

= R
Thusitalig Min R—l eRV(a).
R>0

Differentiation shows the minimum

cceurs at R = v(a)-l

.

Thereforena i< v(a)e"l

or %naﬂs v(a).

/7



B.W. Glickfeld [2] has constructed a Banach Space X
and operator T ¢ B(X) for which v(T) = %J!T“ showing that the
inequality in the previous Theorem is best possible in general.
The less sharp inequality %—Ua“ < v(a) was proved by Lumer [1]
but a more elementary proof is given by Bonsall [1]. For
many purposes this last inequality is sufficient. It is
interesting to note that when A = B(H) for some Hilbert space
H, then the constant é-can be replaced by %-which is also best

possible as the operator T = [O 6’ over 2% shows.
10

For a unital Banach Algebra A and a € A we have
determined a number of expressions for the supremum of the
real part of V(a). These will be of importance in our later
theory. We have also used these bounds to prove that when
A = B(E), for E a normed linear space, the numerical ranges
W(T) and W¢(T), for any support mapping ¢ of E into E', share
a common closed convex hull which we have identified as V(T).
We were thus able to define the numerical radius of a ¢ A
independently of the particular type of numerical range being

considered. The numerical radius was then shown to be an

equivalent linear space norm for a unital Banach Algebra,

22.
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1.4, RELATION BETWEEN THE NUMERICAL RANGES AND THE SPECTRUM

It is well known that, for a Hilbert space H and T ¢ 3(H),
o(T) S W(T) [Halmos, 1]. Tke corresponding result for the algebra
numerical renge of an element of g unital normed algebra is simply

established [J. G. Stampfli and J. P. Williams, 1].

L.1. THEOREM. For a unital normed algebra A and a € A we have
ola) C V(a).

Proof. ILet Cm(a.) be @& maximal commutative subalgebra of A

containing a and e. Since o o (v) = oA(b) for b ¢ Cm(a.), the

Cry
Gelfend theory shows that for any >\. ¢ o(a) there exists & non-zero
maltiplicative functional f in Cm(a)' such that f(a) = A. In
particular Ufil = 1 and f(e) = 1. So by the Hshn-Banach Theorem

T can be extended to £ € A' such that £ ¢ D(e) end

A = f(a) € V(a) by lemma 2.5. //

A similar result for the spatial numericel range is not so
easily established. Clearly if A is an eigenvalue of T ¢ B(E),
where E is a normed linear space, and x, lixil = 1, the corresponding
eigenvector, then A = £(Tx) ¢ W(T) where f ¢ D(x). If A is an
spproximate eigenvalue of T then “here exists X s llxn(l = 1, such
that ITx_ - AIx il = 0 and sc

n n

|£ (Tx ) = A] ¢ 0Tx_ - AIx 0l > O where f_ ¢ D(x_).
n'n n n n n

Hence A € W(T). The full result that o(T)& W(T) was proved by
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Williams [1] using the subreflexivity of Banach spaces established

by Bishop and Phelps [1].
2. THEOREM. If X 4s a Banach Space and T ¢ B(X) then o(T)Z W(T)

Proof. For A ¢ W(T), a(A,W(T)) = inf{|x- g|: £ ¢ W(TS}.= d > 0 hence
for x € X let x = x/ Wx{] then

BT - AT] x> [£([T - AIlg)| for all £ ¢ D(x)

[£(Tx) - A

W

4.

So M[T - AIlxit 3 dyxil for all x ¢ X.

This implies (T - AI)-l exists and is bounded on the Range of

(T ~ AI), R(T - AI), [Bachman snd Narici, 1, p. 241] and that

R(T - AI) is closed.

We now show R(T - AI) is dense in X end so R(T - AI) = X and

hence (T - AI)“l é B(X) so A # o(T) as required.

To see that R(T -~ AI) is dense in X it is sufficient to prove that
N(T'= AI) = {f & X' (T - AI)'f = 0} = {0}

end since the set of functionals which attain their norm in X' are

dense in X' [Bishop and Phelps, 1] it is sufficient to prove that

(T - AI)'f % O when f attains its norm,
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Hence let f e X', Ifl} = 1, attain its norm at x ¢ X

then H(T - AL)'t 3> (T - AI)'£l)

1\

(T - AT)"£(x)|

|£(Tx) - A|

W

d, as before.
So (T ~ AI)'f # 0 as required. //

If A is a unital Banach algebra and a, b € A such
that 0 ¢ V(a) then, by Thearem .k.1, 2™l exists and we have

o(a™lp) C{r/E: x=t(b) and £ = £(a), £ ¢ D(e)}
since &b - e = 2t - Aa) so if A ¢ c(a-lb)
then 0 e o(b - 2a) S V(b - Aa). Hence there exists £ e D(e)
such that 0 = £(b) - M(a) or A = £(b)/£(a).

Williems [1] used Theorem .4.2. to obtain a similar result
for spatial numerical ranges. Namely, if X is a Banach Space and
T, V e B(X) such that 0 ¢ W(T) then

(T HV) S W) / 7T = (A/E = A e WOT, £ WD)}

The previous Theorem (.L.2.) is considerably strengthened
in a recent result of M. J. Crsbb [Thesis, 2] which shows
co o (T) CW(T) for T an operator over a complex Banach space.
Although this result is not necessary for our development of the
theory of nuierical ranges, we will indicate some of its implications

as they arise.
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We now proceed to approximate the spectrum more closely
by numerical ranges. The results were indicated by a formula for
the spectral radius obtained by Bohnenblust and Karlin [1], for a
commutative normed algebra, and Bonsall [2] for any Banach algebra.
As we will show they also give, as a special case, a result of
J. P. Williams [2] for operators on a Hilbert space. A similar
development of these results has also been given by Bonsall and
Duncan [1].

We first need a technical lemma from which we obtain several
useful corollaries. The lemma generalizes a step of William's

proof [2] and Bonsall and Duncans' {1, 2.10].

.3, LEMMA. If associated with the element & of a unital
Banach algebra we have a family of closed subsets of the complex
plane {Wl(a)}x c A‘such that
i) co ola)C W,(a) for all A e A 3
ii) Wl(aa + Be) = awk(a) + B for all a, B e Cand X ¢ As
1ii) If p(om + Be) < 1 then for some A ¢ A

sup{[E]: £ ¢ W, (ca + ge)} < 1:

j?l_wx(a).

then coo(a) =
. A e A

Proof. By 1) W ala) = [1w, (a).
Ae A

IfB={fe C: |&-8|] < r}is a disk such that o(a) CInt B
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then r—l(a - Be) is such that p(r"l(a - Be)) < 1 so by iii) there
exists A € A such that
sup{|&| : £ ¢ WA(r-l(a - Be))) g1
therefore Wi(r"l(a -Be)) e : |g]| <1}
and so by ii)
W, (a) C B.
Since the intersection of all such disks, B, equals co o(a) it

follows that

(1w, () & o(a)
Aed
proving the result. //

Theorem .4.1. shows that the algebra numerical range of
a € A satisfies all the conditions of lemma .4.3. with the possible
exception of iii) which requires that v(oa + Be) < 1 whenever
p(aa + Be) < 1. Further if A = B(X), where X is a Banach space,
Crabb’s result shows the same is true for the closure of the spatial

nunerical range.

b.3.1. Corollary. i) For a unital Banach Algebra A , if a € A
is such that pla + ce) = v(a + ae) for all o ¢ C, then coo(a) = V(a)

ii) - For a Banach Space X, if T € B(X) is such
that p(T + oI) = v(T + aI) for all a ¢ C, then W(T) 18 convex and
equal to co o(T).

Procf. By Theorem .4.1. we may take {Wl(a)}k ¢ p OFf Lemma 4.3, as

A

V(a) and iii) is satisfied since if p(wa + Be) < 1 then
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lalv(a + aulse)

v(oa + Be)

lajola + o tge)

plaa + Be)

1]

< l'
ii) Follows similarly to i) replacing Theorem .k.1. by

Crabb's result [2]. //

For a Banach algebra A and a e A we now proceed to
construct a family {Wk(a)}A ¢ pSuch as required in Lemma .L.3,
If p is an equivalent norm on A we can define the numerical range
of a, Vp(a), in the Banach algebra A with norm p. We will see that
the family of all such numericeal ranges satisfies the conditions of
lemme .4.3. To ensure that iii) of Lemma .k.3. is satisfied it is
sufficient to show that if a € A is such that p(a) < 1 then there
exists an equivalent norm, p, on A for which a is a contraction,
that is p(a) < 1, for then vp(a) < pla) £ 1, where vp(a) denotes
the numerical radius of Vp(a).

Before proceeding we require the well known result that if

p(a) < 1. then the iterates of a are uniformly bounded [G.-C. Rota, 1].
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b4, LEMMA. For a Banach algebra A if a € A is such that
pla) = v < 1, then there exists M > O such that tia™) 22 M°

3

and so N2l ¢ M for all n.

Proof. Define f:C + C by f£(z) = g=oua.n I z°, which, by the spectral
radius formula, converges for ]zl < r“l. Thus f(z) is analytic
for |z| < r! ana so

I =j 0 £(2)f(z)dz < » for R < r™', Using Parseval's Identity we
|z]=r

2R2n -

have 21 = ¥ UanU 80 choosing R= 1 < p l, ags r < 1, we have

n=0

2 n,2 .
= < co
M Tha ) //

Let the unital Banach algebra A be a closed subalgebra of
B(X), for some Banach space X, with the unit e acting as the identity

operator on X, Then for a given a ¢ A, with p(a) < 1, and x e X

define:
p,(x) = sugzo{nanxﬂ }
0, (%) = [_pa"xi? IF
ra(x) = inf gzo "Xkﬂs where the infimum is taken over all possible

finite sets Xiseee X (xk € X) such that
X = E at
=0 & %
Let P (b) = sup{p, (bx) : p,(x) = 1} for b ¢ A and similarly define

Qa(b) and Ra(b)'
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If we take X = A and regard A as a subalgebre of B(X)
under the left regular representation, then if A is commutative Bohnenblust
and Karlin [1] prove that ra(°) is an equivalent algebra norm on A
with ra(a) € 1, while Bonsa2ll [2] shows that ra(ﬁ) is always an
equivalent linear space norm on A and the corresponding operator norm
Ra(c) on A is such that Ra(a) < 1.
We prove a similar result to Bonsall's for pa(°) and qa(=)e Bonsall

and Duncan [1] also use pa(o).

A5, LEMMA. Let the wunital Banach algebra A be g subalgebra of
B(X), X some Banach space, with ¢ = I, then for a ¢ A, with pla) < 1,
pa(°) and qa(°) are equivalent norms on X and the operator norms

Pa(°) and Qa(v) are equivalent norms on A with Pa(a), Qq(a) < 1.

Proof. 1Irf Pa(x) = 0 then Ha®xll = 0xfl = 0 so x = O.

H

Also Pa(ux) sup {#a ax it}

|a|sup{naxu}

IalPa(x), agq
Pa(x +y) = sup{na(x + v} < suplnaxu} + sup{iiayu} = P (x) + Pa(Y)
50 Pa(°) is a norm on X. Further

Pa(x) > 1axy = uxl and, since Halxig M Nhxh by lemma .b.k.,

pa(x) < MilxW , so Pa(v) is an equivelent norm on X.

Lastly Pa(a) = sup{na(ax) !l : suphia xll = 1}
* =0
= sup {naxN} g sup {na"xh } = 1,
n=1l n=0

Using Minkowski's inequality the result for qa(c) and Qa(v) follows

along similar lines. !/
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4.5.1. Corollary. For a unital Banach algebra A and a ¢ A
with p(a) < 1, there exists an equivalent norm p on A

with which A is again a wnital Banach algebra and pla) 5 1.

Proof. In the last lemma teke X = A and regard A as a subalgebra
of B(X) under the left regular representation, then for p(a) = Pa(a)
(or Qa(a)) we see that p(a) < 1 and since p is the algebra norm

on A arising from the renorming of X by pa(o), and since e = I,

we have p(e) = 1 and so A with norm P is a unital Banach algebra. 1/

k5.2, Corollary. For a Banach Space X and T e B(X) with o(T) < 1,
there exists an equivalent norm p on X euch that

p(T) = sup{p(Tx) : x ¢ X,p(x) = 1} 5 1.

Proof. Let A = B(X) and apply lemma .4.5. with p = pa(°) (or
a (-)). //

8

4.5.3. Corollary. For the Banach space X, T ¢ B(X) 73 an isometry
for an equivalent norm on X if o ¢ M > 0, for all n, and for each

x e X, xti g 1T for some n > 0.

Proof. Since IT™ ¢ M for all n, we see, by the proof of lemma .h4.5.,
that for each x ¢ X

p(x) = sup.  {IT%% 0 } is an equivalent norm on X.
n=0
Further p(Tx) = sup  {IT% }
n=1
sup.  {(IT%xU } = p(x)
n=0



since the condition yjxil g UTan, for some n > 0, insures that the
latter supremum is not attained for n = 0. So p(Tx) = p(x) for

all x e X and T is an isometry on X for the equivalent norm p. //

A simple calculation shows the last Corollary is a
special case (d = 1/M) of a result by D. Koehler and P. Rosenthal
[1, Theorem 2], who show that T e B(X) is an isometry for an
equivalent norm if and only if there exist d, M > 0 such that

N7 ¢ M and 4 OxU s UM%, for all n and all x e X.

We can now prove the main result. It also appears in
Bonsall and Duncan [1], while the corollary was first proved by
Bohnenblust and Karlin [1] for & commutative algebra and later

by Bonsall [2] for arbitrary unital Banach algebras.

4.6, THEORE4. i) For a unital Banach Algebra A and a e A we
have

coo(a) =I?}Y;$a) where the intersection is taken over all
equivalent norms p on A with p(e) = 1.

ii) For a Banach space X and T e B(X) we have

< o(t) =[Yvp(T)
=‘”\WbiT) where the intersection is taken over all

- -

equivalent norms p on X.

Proof. i) B8ince o(a) is unaltered by equivalent renorming we have

co g(e) CVP(&) for all p. Furfher if b = as + Be is such that



p(b) < 1 then by Corollary .4.5.1. there cxists an equivalent norm
p such that vp(b) € 1. So the family Vb(a) satisfies the
requirements of lemma .k4.3. and the result follows.

ii) From Crabb's result [2] EE'GOE)S;ﬁngj'for all p.
The result now follows by arguments exactly similar to those

used in i) with Corollary .L4.5.1. replaced by Corollary .4.5.2.//

.h.6.1. Corollary. For a unital Banach algebra A and = ¢ A
we have
pla) = inf vp(a) vhere the infimwn ie taken over all equivalent

norms p on A such that ple) = 1.

Proof. This proof is immediate from Theorem .4.6 1i). //

From the proof of Theorem .4.6. and Corollary .4.5.1.
we see that the intersection in Theorem 4.6. need not be taken over
all equivalent norms but only overithe family of equivalent norms
Ps(°) (or Qs(o)) where s ¢ A, p(s) < 1. While this is of little
importence for general Banach algebras, it does allow the
result to be sharpened for A = B(H) where H is some Hilbert space.
Using a result of Rota [1], Williams [2] has proved that
for an operator T over a Hilbert space H
co o(T) = ﬂw(s"lTs)
where S is a boinded one to cmz operator from H onto a closed

subspace of H, with bounded inverse S™L.
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We prove that

o o(T) =£~1(W(S-1TS)) where S is & regular element of B(H).
S

Our proof shows how this, and William's result, arise as special

cases of the theory developed so far.

L7, LEMMA. If H is a Hilbert space and T ¢ B(H) has ¢(T) < 1,
then there exists a regular S ¢ B(H) such that the equivalent
renormng qT(°) arises from the original norm by qT(x) = [gxll

for all x ¢ H.

Proof. It is readily seen that & second inner-product is defined
on H by

(x, y)T = §=O (1%, T%) for all x, y ¢ H.
Letting HT denote H with inner-product ( , )T we see that
nxl%z = (x, x)T = qT(x)2 and so Hy is a Hilbert space.
It will now be sufficient to show that H and HT have the same
orthogonal dimension, for then by [Wilansky, 1, p. 130, Theorem k4]

there exists an isometric isomorphism S of H_ onto H, and since

T
by lemma L4.5., H, is H equivalently renormed we may identify S
with a regular operator on H such that i#Sx!i = qT(x) for all

x e H.

Now that H, HT have the same orthogonal dimension follows by adapting

a standard srgument.



Let B, BT be maximal orthonormal sets in H, H,Il respectively.
For each b ¢ B let
BT(b) = {¢c ¢ By, (c, b)T # 0}, then BT(b) is a countable

set. Now assume there exists ¢ # 0, c ¢ B_ but ¢ ¢ B_(b) for
f p

T

any b ¢ B, then (c,b) = 0 for all b ¢ B, but H is a Hilbert

space and so every element of H can be written as a countable

linear sum of elements in B. Therefore (c ,¥) = 0 for all

y € Hand so c = 0. Hence every c ¢ BT is in some BT(b). That is
B, |J B,(v) ena #8, < 3. 1_ = 43,

beB
Similarly #B < #B;, and so #B = #By,» //

..4.7.1. Corollary. If H 4s a Hilbert space and T € B(H) has p(T) < 1,

then there exists regular S e B(H) such that for all V ¢ B(H)

hsve™tn = (V). 8o in particular nsrs™ty < 1.

Procf. By lLemma .kh.T.

QT(V)

sup{qT(Vx) : xe H, qT(x) = 1}

sup{SVxll : x ¢ H,iISxll = 1}

sup{nsvs'lyu 2y e H, iyl = 1}

i

NSVS_l(I s Bince 8 is regular and so each x ¢ H can

La

be written x = Suly some y € H, That USTS ) £ 1 follows from

lems 4.5, /-

35.



4.8, THEOREM. For a Hilbert space H and T e B(H) we have
co o(T) =I—]W(STS'1) where the intersection ig taken over

all regular 8¢ B(H).

Proof. Since o(sT8™1) = o(T) for all regular S e B(H) and .
since W(V) is convex for all V & B(H) we see that ES'o(T)g;W(STs‘l).
Further if V = oT + BT is such that p(V) < 1 then by corollary
-4.7.2. there exists regular S e B(H) such that

v(svs™t) ¢ usvs ™ty < 1.
So the family W(STS™) satisfies the conditions of Llemms .4,3.

and the result follows. ) //

4.8.1. Corollary. For a Hilbert Space H and T ¢ B(H) we have
p(T) = inf v(STS“l) where the infimum is taken over all

regular S ¢ B(H).

That Theorem .L4.8. is not true for arbitrary Banach
spaces is shown by Crabb, Duncan and C.M. McGregor [1], who show
thet for a finite dimensional Banach space X and T ¢ B(X)

o(T) = inf v(sts™)
8

if and only if the norm of X is absolute with respect to some beais,

In this section we have seen that the spectrum of an
element of a unital Banach algebra is contained in the closure of

the numerical range of that element. Since co o(a) V(a) the

36.
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closest relation between the spectrum and numerical range would

be co o(a) = V(a). We have shown this to be the case if a is such that
‘olatde) = v(atde) for all A e C. We also saw that co o(a) may

be approximated arbitrarily ciosely by numerical ranges defined

with respect to equivalent norms. Further relations between the
spectrum and numerical range for particglar types of operators

will be developed later in Chapter 3.

5. HERMITIAN ELEMENTS

In this section we make a study of those elements of a
unital Banach Algebra distinguished by having real numerical ranges.
Such elements are fundamental to the study of Banach Algebras,
through numerical range, and are the basis of the theory developed
in Chapter 2.

Although the proofs of many of the results in this section
are well known we give them because of their importance and the

constant use we will make of the results in later theory.

5.1, DEFINITION. The element a of the Banach Algebra A is
hermitian if V(a) is real.
If A = B(E) for some normed linear space E, then Corollary 3.1.3

shows that it does not matter which numerical range we use to

define hermitian, for if one is pveal then all are.
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The following Lemma gives a simple and useful criterion for
determining hermitian elements, and as we will show later, for the
right choice of functions, gives a characterisation of hermitian

elements,

5.2. LEMMA. For a unital Banach Algebra A, a ¢ A is hermitian
if, for some pseudonorm p on the real linear space generated by
e, a and a? with ple) = 1, we have

tv(a+re)? ¢ pl(atre)(athe)] for all A € C. ¢

Proof. For f e D(e) let f(a) = a+iB ®,8 real §
then for any real y

Y2+2y8+82 = (y+8)2

[iy+ig]|?2

i

| £(a~ae+iye)|?

[v(at+(-o+iy)e)]?

A

IN

pl (a+(-a+iy)e)(at(~a~iy)e)]

pl(a-ae)2+y2e]

A

pl (a-ce )2]+y2.
So 2yB+82 ¢ pl (a-ae)? Jfor all real y.
But this is only possible if g = 0, therefore f(a) = o is real

and so by Lemma 2.5 v(a) is real and a hermitian. //

Note that the norm of A, the numerical radius and the

spectral radius, restricted to the real linear space generated by
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e, a and a2 are all suitable choices for p in the above Lemma.
We will later see that the above Lemma gives a necessary as well
as sufficient condition for a to be hermitian.
The next lemma uses the results of Section 3 to obtain
several characterisations of hermitian elements. These character-

isations were first used by Lumepr [1,2].

5.3. LEMMA. For aq unital Banach Algebra A and a € A the following
are equivalent to a being hermitian:

i) 1im a—l{ne+iaan -1} = 0 (o real)
a+0 ;

ii) nexp(ica)ll= 1 for qll real a.

Proof. i) If v(a) is real, then
sup Re V(ia) = sup Re V(~ia) = 0.
So by Corollary 3.1.2

lim B Myeripay -1}

=0
B0+
or lim o {leticail ~1} = 0 (o real).
o0

ii) From Corollary 3.2.1
sup 8t log Wexp(xiga)ll = 1im Bfl{netisau -1} = o0,
8>0 B~>0+
by the proof of i) if V(a) is real.

Therefore, for all g8 > 0

log llexp (xiga)W = 0

or llexp(ioa)l! = 1 for all real a. //
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The following Lemma, essentially due to I. Vidav [1], is
one of the most important in the theory of numerical range and
provides the basis for much of our later work. A proof avoiding

an appeal to Polya and Szegd is given by Bonsall and Duncan [1].

5.4. LEMMA. For a unital Banach Algebra A and hermitian element

a ¢ A we have co o{a) = V(a) and so in particular p(a) = v(a).

Proof. since oc(a)C V(a) is real, it is enough to show
sup o(a) = sup V(a) and inf g(a) = inf V(a).

- sup g(-a) and

Further since inf o(a)

1

inf V(a) = ~ sup V(-a)

it is sufficient to show sup s(a) = sup V(a) for any hermitian a ¢ A.
The first step in the proof is to obtain two expressions, similar
to those of Corollary 3.2.2, for sup ¢(a). The argument we use is

given by Stampfli and Williams [1].

Let vy = sup o(a), then since exp is an increasing function on R,

el = sup{ e 0o o(a) » but by the spectral mapping theorem

Y

olexp(a)) = {” : 0 & 0 (a)}C [0,=) theréfore e' = p(exp(a)).

Applying the spectral radius formula gives

Y

e 1lim {jexp (na) “l/n

Ir)-w

inf Hexp(na) (L/n .
n>0

1
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Therefore since log is a continuous function we have

vy = lim ot log (jexp(aa)ll
a-)-oo

= inf ot log ljexp(aa)ll .
o>0

The latter expression shows that e’ ¢ texp(aa)il for all o > 0.

While the first expression gives 0 = lim ot log(exp (aa)ll e ),

So log(liexp(oa)lf e V) = o(a) as a 3+:.

Now for any f ¢ A' consider the function 6 : C + C defined by
8(1) = f(exp(A(a-ye))) for all A ¢ C.

It is easily seen from the definition of exp that 6 is analytic in

any bounded region of the complex plane.

Also for € > 0 and X = o+if a,B real, we have

lo(r)e |

| £(exp (a(a-ve)exp(if (a-ye)))| |e %Y

"N

Dexp(ala-ye)) 1 [e %%,
since a-ye is hermitian and so by Lemma 5.3ii) lexp(ip(a-ve))li= 1.
Therefore, for o sufficiently large

Ie(l)e—SA] < (lexp(oa)ll e™®) |e7¢¢

- eo(a) oTE

and hence lim Ie(x)ensxl = 0.
Q>
So by Polya and Szeg® [1,p.147] we have |68(A)| < 1 for Re A > O.

That is lf(exp(A(a—ye)))I ¢ 1 for Re A > 0, but f was arbitrary
so exp(A(a-ye))) < 1 for Re A 2 0 and so in particular for a > 0
exp(a(a-vye))ll < 1

or flexp(aa)lt < e*V.



Combining this with the.reverse inequality previously established
we have
nexp(aa)il = ™Y,

Now by Corollary 3.2.2

n

sup ot log jjexp(oa) (i
o>0

sup Wa)

sup o % log &*Y

o>0

Y, proving the result. //

Combining the previous lemma with Lemma 5.2 we obtain the

following characterisation of hermitian elements.

5.5. THEOREM. For a unital Banach Algebra A, the element a e A
is hermitian if and only if [v(atre)]? < pl(atre)(atre )1, for all

A e C, where p(b) = p(b), v(b) or Ubll for qll b e A.

Proof. Sufficiency fblléws directly from Lemma 5.2. Hence it is
only necessary to prove

[v(@a+2)1? < p[(a+r)(a+X)] for all A e C
whenever a is hermitian. The other bounds then follow since
p(b) < v(b) < bl for all b e A, Hence, for hermitian a ¢ A and
A = a+if a,B real, we have V(atae) is real and since
V(atie) = V(atoe )+iB we see that

[v(atre )I? = ([v(atcae )1?+82)

[p(atoe )]2 + B2, by Lemma 5.4

ol (atoe )2] + 824 by the spectral mapping theorem,

L2.



from which it also follows that ol (atee)2]< [0,) and so

ol (atae)2]+p2 = ol(atoe)?+82], since o(atae) is real.

Therefore

[v(a+re)]?

ol (a+ae )2+82]

ol (at+he )(a+ke)]. ' //

This theorem provides the motivation for our treatment of

Banach®*-algebras in the next chapter.

Using a generalisation to a theorem of §. Bernstein,

A.M. Sinclair [1] has proved that p(atoe) = {lathell , for all A ¢ C,
where a is an hermitian element of a unital Banach Algebra. This
is a significantly stronger result than that of Lemma 5.4. The
proof leads directly to the equation

Hatatiz = ([p(atoe)12+82) where )\ = o+ig «a,8 real.
Combining this with the proof of Theorem 5.5 we would obtain the
stronger characterisation that an element a of a unital Banach
Algebra is hermitian if and only if

atreli? = o[ (athe )(athe )] for all A e C.
A more elementary proof of Sinclair's vesult for the case when
A = 0 is given by Bonsall and Crabb [1], however the above

characterisation does not appear to follow easily from it.

L3,
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The last lemma in this section examines the set of hermitian
elements in a Banach algebra. We will denote by H(A) the set of

all hemitian elements of the Banach Algebra A.

5.6. LEMMA. For g unital Banach Algebra A the set of all

hermitian elements of A, H(A), is closed.

Proof. Let a be a cauchy sequence of hermitian elements of A
converging to a ¢ A, For any € > 0 there exists N such that
Han-au e fornx N, IfA e V() then A = f(a) for some
F e D(e). Let An = f(an), then

IAn—AI = ]f(an~a)| < lla-alt ¢ ¢ forn : N,
So A is the limit of the real sequence Xn and therefore A is

real. //

For a unital Banach Algebra we have developed several
characterisations of hermitian elements, the most important of
which was Theorem 5.5, that is, a is hermitian if and only if
[v(at+tre)]? < pl[(atre)(atre)] for all A ¢ C.  This inequality may
be compared to Corollary 4.3.1i), in which it was shown that
v(atre) = p(atre) implied Gogla) = V¢a). To establish this
characterisation of hermitian elements we proved the fundamental
result of I. Vidav, that for any hermitian element azﬁ;s(a) = V(a).

All of these results will be used in the development of later

material, as will the last result that the set of hermitian

elements is closed.
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6. ELEMENTS WITH HERMITIAN DECOMPOSITION;
NORMAL TYPE ELEMENTS;
THE FUNCTIONAL CALCULUS FOR HERMITIAN ELEMENTS WHRSE POMWERS
ARE HERMITIAN.

In this section we establish properties of some special
elements of a Banach Algebra. The motivation to study such
elements comes from the theory of operators over a Hilbert space
and the observation that every self-adjoint operator over a Hilbert

space is hermitian in the sense of Definition 5.1.

6.1. DEFINITION. For a Banach Algebra A, we say the element
a € A permits an hermitian decomposition if there exist hermitian

elements p,q € A such that a = p+iq.

The content of the next lemma is also contained in Bonsall
and Duncan [1]. |
6.2. LEMMA. For a wunital Banach Algebra A we have:
i) if a € A permits an hermitian decomposition then that
decompogition is unique;
ii) the set of elements of A permitting an hermitian

decompogition is a closed limear subspace of A.
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Proof., i) Assume a = p+iq = p'+iq' where P>p',9,q' are hermitian,
then p-p' = i(g-q'). Thus the hermitian element p-p' equals i
times the hermitian element q-q' which is impossible unless p = p'
and q = q°'.

ii) If a,b e A permit hermitian decompositions a = p+iq,

b = htik, and if A = o+i8 «,B8 real, then

Aatb = (at+ig)(p+iq) + (h+ik)

(ap-Bq+h) + i(Bp+ag+k)
where op-gq+h and Bp+aq+k are hermitian, so Aatb permits an
hermitian decomposition. Therefore the set of elements permitting
hermitian decompositions is a linear subspace of A.

Now assume the sequence 8 converges to a ¢ A, where
a = pn+iqn P.>q, hermitian. For any f € D(e) and ¢ > O there

exists N such that lf(an-am)i < nan—amn < € for n,m > N, but

lf(an—am)l If(pn"pmﬁ(qn"qm))|

lf(pn~pm)+if(qn~qm)|

V(£ -p ) |2+|£(q_-q_)|?).
Therefore If(pn-pm)l, If(qn—qm)l g € for all £ ¢ D(e) and so
V(Pn"Pm)3 v(qn-qm) < € and by Theovem 3.5
Hp,P, il llg_-q I < ec.
Therefore by Lemma 5.6 there exist hermitian p,q such that P,

converges to p and q, converges to q.
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Now Uan—(p+1q)lls 0p, -pil + uqn-qn so a_ converges to ptig.
Therefore a = p+iq has an hermitian cecomposition and so the set

of elements with an hermitian decomposition is closed. //

A simple but important property of an element a which
permits an hermitian decomposition a = pt+iq is that for
otip ¢ V(a) o,B real, there exists an f ¢ D(e) such that f(p) = o

and f(q) = 8. The next lemna makes use of this cbservation.

6.3. LEMMA. For a unital Banach Algebra A and a ¢ A permitting
an hermitian decomposition there exists A € C, |A| = 1, such that
v(a) = v(p) where Aa = p+iq p,q hermitian.

Proof. By Corollary 2.5.1 V(a) is compact, so there exists 6,

0 € 6 < 27, such that v(a)eie e V(a). Let A = e-ie then

v(a) = v(xa) e V(Aa) so there exists f e D(e) such that £(p) = v(a)
where Aa = p+iq p,q hermitian (possible by Lemma 6.2ii)), Hence
v(a) £ v{p). But for any f ¢ D(e)

v(a) = v(ha)

W

If()\a)fl

| £(p)+if(q)|

V(£(p)2+£(q)2?)

I

so |£(p)| ¢ v(a) and therefore

vip) = v(a). //
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We now turn our attention to an important subset of the

elements which permit hermitian decompositioms.

6.4. DEFINITION. For a Banach Algebra A we say the element a e A
is a normal type element if a permits the hermitian decomposition

a = p+iq where pg = gp.

Such elements are also considered by Bonsall and Duncan [1]
who refer to them as '"normal" elements. A straightforward
calculation shows that the set of normal type elements is closed
under scalar multiplication and the addition of scalar multiples
of the one, if present. That is, for a normal type element a,

Aa and atle are normal type elements for all A ¢ C. Further if a

has the hermitian decomposition a = p+iq then ap = pa and aq = qa.

An alternative proof of the next lemma is given by Bonsall
and Duncan [1,5.14].
6.5. LEMMA. For a unital Banach Algebra A and normal type element

a e A, we have <o o(a) = V(a).

Proof. Let b be any normal type element of A, then by Lemma 6.3
there exists A ¢ C, |A] = 1, such that Ab = pt+iq, where p,q are
hermitian and commute, with

v(b)

v(p)

i

p(p) by Lemma 5.4,
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Now let Cm(b,p) denote @ maximal commutative subalgebra of A

containing e,b and p. Then by the Gelfand theory there exists a

multiplicative f ¢ Cm(b,p)' such that f(p) = p(p) = v(b). Again

by the Gelfand theory f(b) e o(b) so |f(b)| g p(b). Therefore
v(b) = £f(p) = Re £(Ab) 5 |£(b)] £ p(b) g v(b)

or v(b) = p(b).

In particular, then v(atie) = p(atie) for all A ¢ C and so by

Corollary 4,3.1i) co o(a) = V(a). //

6.5.1. COROLLARY. For a Banach Space X and nommal type operator

T e B(X) we have co o(T) = W(T) and so W(T) is convez.

Proof. From Crabb's result [2] and Lemma 6.5 we have

V(T) = o o(T)G W(T) & V(T), /!

We will make use of elements with hermitian decompositions,

and the properties of normal type elements in the next chapter.

We now turn to developing a Functional Calculus for

hermitian elements whose powers are also hermitian. That the
powers of a hermitian element are not always hermitian is shown
in a simple example by Crabb [1]. 1In fact as we will show in
the next chapter, an hermitian element, all of whose powers are
hermitian, may be identified with a self-adjoint operator over
some Hilbert space. Thus the general setting of this functional

calculus is only an apparent one. However as we see in the next
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chapter it is useful to have the tools of a functional calculus

available to us in this setting.

Let A be a unital Banach Algebra and h € A be an hermitian
element of A, all of whose powers are hermitian. Denote by A(h)
the closed subalgebra generated by e and h., It is readily seen
that A(h) is a commutative subalgebra of A all of whose elements
permit an hermitian decomposition within A(h) and hence A, and so
are normal type elements. (Note, by Corollary 2.5.2 the concept
of hermitian, and hence hermitian decomposition and normal type
element, coincide for A(h) and A.) Since every element a of
A(h) permits the hermitian decomposition a = p+iq, where by Lemma
6.2i) p and q are unique, we can define the mapping a » a* = p-iq
of A(h) into A(h). A more detailed study of such a mapping is
undertaken in the next chapter, here it is sufficient to have the

notation available to us.

The functional calculus can now be developed in the
standard way.
As h is hermitian o(h) is a closed, bounded and hence compact
subset of the real line and so C(o(h)), the set of all continuous
functions f : g(h) + C, is a complex Banach space under pointwise
addition and the uniform norm;

BEW = sup{|£(A)| : X € o(h)}. /



Further for f,g € C(o(h)) the pointwise defined product f-g and

conjugate function F are also in C(o(h)).

Let P(o(h)) be the subset of C(o(h)) consisting of all polynomials
. n

p over o(h) defined by p(A) = Gptagr+...ta AT for A e o(h) and

@, ¢ C 1=0,1,...,n, for any n. For such a p ¢ P(g(h)) we can

define p(h) e A(h) by p(h) = a0e+a1h+...+anhn.

It is routine to check that such p(h) satisfy the following:

i) (p+p')(h) = p(h) + p'(h)

ii) (pep")(h)

p(h)p'(h)
iii) p(h) = p(n)*,
Also by the spectral mapping theorem

iv) o(p(h)) = plo(h))

and so

v) v(p(h)) = ypy .
This follows since p(h) is a normal type element and so by Lemma 6.5

v(p(h)) = p(p(h))

sup{ [A| : X & o(p(h))}

il

"

sup{[p(A)| : A € o(h)}, by iv)

1]

nptt .

We can now state the basic theorem of the functional calculus.

51.
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6.6. THEOREM. For a unital Banach Algebra A and hermitian
element h ¢ A whose powers are hermitian, there exist a unique
map £ = £(h) : C(o(h)) » A(h) such that:

i) (f+g)(h)

1]

£f(h) + g(h)

H

ii) (£.g)(h) = £(h)g(h)
1i1) F(h) = £(n)*
iv) v(£f(h)) = UfHl
v) if £ e P(o(h)) then £(h)=ae +a1h+...+anhn where

£(A) = agtagr+...ta A" for A e o(h).

Proof. From i) and v) of the previous page, the map p* p(h) is
a linear isometry from P(o(h)) into A(h) with the equivalent
linear norm v{-),

By Weierstrass' approximation theorem P(g(h)) = C(¢(h)) and so
since A(h) is complete p = p(h) can be extended uniquely by
continuity to a linear isometry £ & f(h) of C(g(h)) into A(h),
which satisfies i), iv) and v) of the theorem. That ii) and
iii) hold,now follows from the corresponding results for

p * p(h). //

Whereas for an arbitrary element of a Banach Algebra we
have had to rely on establishing convergence of the corresponding
infinite series to prove the existence of inverses, logs, exps,

etc., the above theorem ensures us of their existence for an
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hermitian element h, whose powers are hermitian, provided the

corresponding function is well defined on o(h).

6.7. LEMMA. For a unital Banach Algebra A and hermitian element
h € A whose powers are hermitian, we have:
i) 2f £ e C(o(h)) <8 such that f(o(h)) is real then f(h)
tg hermitian
ii) <f £ e C(o(h)) <s such that f(o(h)) < [0,2) then

V(f(h)) € [0,=).

Proof. i) If £ e C(o(h)) is real valued it may, by Weierstrass'
approximation theorem, be approximated arbitrarily closely by real
valued polynomials, If p(A) = a0+u1A+...+anAn is real valued '
then o, is real for i = 0,1,...,n and so p(h) = a0e+oz1h+...+cxnhn
is hermitian, therefore £(h) may be approximated arbitrarily
closely by hermitian elements and so by Lemma 5.6 £(h) is
hermitian.

ii) since f(A) > 0 for all A € o(h) we can define
g € C(o(h)) by g(r) = /£(A) for all A € o(h)., Then since g is
real valued, g(h) is hermitian, by the proof of the first half
of the lemma, and f(h) = g(h)?, by Theorem 6,6ii). Therefore,
by Lemma 5.4

V(£(h)) = V(g(h)2) = o o(g(h)2)

<0 o(g(h))2C [0,%). /7
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We have now developed the basic theory of numerical ranges
necessary for our purposes. In section 4 we saw how numerical
ranges may be used to approximate the spectrum as closely as the
basic properties of these sets will allow.
Hermitian elements were examined in section 5. The character-
ization of hermitian elements given by Theorem 5.5 is used in the
next chapter to give an elementary proof that a unital Banach®-
algebra, in which every self-adjoint element is hermitian, is a
B*-algebra for some equivalent norm, Since the powers of a ?
self-adjoint element are self-adjoint, we are able to apply the :
functional calculus of the last section to any self-adjoint
element of a Banach®-algebra in which every self-adjoint element
is hermitian. We use the results of section 6, on elements which
permit an hermitian decomposition and normal type elements, to

characterize these algebras among unital Banach algebras.



